載體指南
相關(guān)服務(wù)
載體構(gòu)建質(zhì)粒DNA制備
病毒包裝服務(wù)
mRNA基因遞送解決方案
CRISPR基因編輯解決方案
shRNA基因敲低解決方案
FLEX條件性表達(dá)慢病毒載體結(jié)合了載體家的高效的第三代慢病毒載體系統(tǒng)和Cre響應(yīng)的FLEX條件性基因表達(dá)載體,幫助您實現(xiàn)在病毒宿主基因組上永久整合Cre重組酶響應(yīng)的FLEX Cre-Off基因調(diào)控開關(guān)。FLEX Cre-Off系統(tǒng)利用位于目的基因兩側(cè)的Lox-變體重組位點,在Cre重組酶的調(diào)控下目的基因發(fā)生反轉(zhuǎn),目的基因正常表達(dá);而Cre不存在的情況下,目的基因不表達(dá)。
FLEX Cre-Off系統(tǒng)由兩對異型Lox-變體重組位點組成,其中野生型序列稱為LoxP,突變體稱為Lox2272,分別位于ORF的兩側(cè)。 兩種Lox-變體都可被Cre識別,但只有相同的Lox位點對可以彼此重組,與其他Lox-變體不能進(jìn)行重組。 LoxP和Lox2272位點以交替方式位于ORF兩端,每對位點互為反向。Cre重組酶不存在的情況下,客戶定制的啟動子可以驅(qū)動目的基因的正常表達(dá)。Cre重組酶存在的情況下,LoxP和Lox2272位點對分別重組,導(dǎo)致ORF方向反轉(zhuǎn)為反向,且其中的一對重組位點將具有相同的方向,Cre會介導(dǎo)產(chǎn)生正向重組切割,繼而分別留下一個不同的重組位點。ORF方向的反轉(zhuǎn),使得目的基因無法正常表達(dá)。由于ORF側(cè)翼是兩個不同的Lox-變體位點,所以即使存在Cre也不會進(jìn)一步發(fā)生重組。
慢病毒載體首先以質(zhì)粒的方式構(gòu)建并使用E. coli擴(kuò)增,然后與多個輔助質(zhì)粒一同轉(zhuǎn)染至包裝細(xì)胞。載體上的兩個LTR區(qū)域之間的DNA序列將被轉(zhuǎn)錄成RNA,而輔助質(zhì)粒表達(dá)的病毒蛋白進(jìn)一步與這些RNA組裝形成完整的病毒顆粒。有活性的病毒顆粒被釋放到上清液中。病毒上清液可直接轉(zhuǎn)染或者濃縮后轉(zhuǎn)染細(xì)胞。
當(dāng)病毒感染靶細(xì)胞時,病毒RNA被反轉(zhuǎn)錄成DNA,然后永久性整合到宿主基因組。位于兩個LTR區(qū)域之間的FLEX Cre-Off開關(guān)連同其他病毒基因組組分永久整合到宿主基因組。在Cre重組酶的介導(dǎo)下,自定義啟動子調(diào)控下的目的基因的反轉(zhuǎn)ORF編碼方向從而實現(xiàn)目的基因的表達(dá)沉默。
通過改造優(yōu)化,我們的慢病毒載體刪除了與病毒包裝和轉(zhuǎn)導(dǎo)相關(guān)的基因(這些基因由輔助質(zhì)粒進(jìn)行表達(dá),用于病毒包裝過程),使產(chǎn)生的慢病毒顆粒是復(fù)制缺陷型的。即包裝的病毒只具有轉(zhuǎn)導(dǎo)靶細(xì)胞的能力,而無法在靶細(xì)胞中進(jìn)行大量復(fù)制,因而具有很高的生物安全性。
關(guān)于該載體系統(tǒng)的更多信息,請參考以下文獻(xiàn)。
參考文獻(xiàn) | 主題 |
---|---|
J Virol. 72:8463 (1998) | The 3rd generation lentivirus vectors |
Nat Protoc. 1:241 (2006) | Production and purification of lentiviral vectors |
Gene. 216:55 (1998) | Characterization of LoxP mutants, including Lox2272 |
Nat Biotechnol. 21:562 (2003) | Development of the FLEX switch system |
J Neurosci. 28:7025 (2008) | Application of a FLEX switch system |
FLEX Cre-Off條件性表達(dá)慢病毒載體專為在哺乳動物細(xì)胞中實現(xiàn)高效的目的基因調(diào)控表達(dá)而設(shè)計。目的基因受到用戶自定義的啟動子調(diào)節(jié)并且默認(rèn)為表達(dá),但是可以在Cre重組酶存在的情況下反轉(zhuǎn)ORF編碼方向使目的基因失活。
我們目前采用的是第三代慢病毒包裝載體系統(tǒng)。經(jīng)優(yōu)化,該載體在大腸桿菌體內(nèi)具有很高的拷貝數(shù),包裝的活病毒具有很高的滴度,對大多數(shù)宿主細(xì)胞具有高效的轉(zhuǎn)導(dǎo)能力,能有效地把載體整合到靶細(xì)胞基因組并實現(xiàn)外源基因的高水平表達(dá)。
基因失活可控:Cre重組酶存在的情況下,ORF方向轉(zhuǎn)為反向,可防止基因發(fā)生泄漏表達(dá)。
基因穩(wěn)定失活: 在Cre的存在下,LoxP和Lox2272位點對分別重組,導(dǎo)致ORF方向永久性地轉(zhuǎn)為反向,且其中的一對重組位點將具有相同的方向,Cre會介導(dǎo)產(chǎn)生正向重組切割,繼而在ORF的兩端留下兩個不同的Lox-變體,即使存在Cre也不會進(jìn)一步發(fā)生重組,使得目的基因的表達(dá)永久失活。
外源基因的穩(wěn)定整合:常規(guī)質(zhì)粒轉(zhuǎn)染只能實現(xiàn)外源基因的瞬時表達(dá),這種外源基因會隨著宿主細(xì)胞的分裂而不斷丟失,在快速分裂的細(xì)胞中顯得尤為顯著。相反的是,慢病毒轉(zhuǎn)導(dǎo)的目的基因能穩(wěn)定地整合到宿主細(xì)胞的染色體中 ,因而會隨著宿主細(xì)胞的分裂而穩(wěn)定遺傳。
滴度高:我們的病毒載體可以包裝出高滴度的病毒。我們提供的病毒包裝服務(wù),病毒滴度可以達(dá)到>109 TU/ml。在這樣的病毒滴度下,如果選擇合適的劑量去轉(zhuǎn)導(dǎo)體外培養(yǎng)的哺乳動物細(xì)胞,則轉(zhuǎn)導(dǎo)效率可接近100%。
宿主范圍廣泛:我們的病毒包裝系統(tǒng)包裝出來的病毒含有VSV-G包膜蛋白,此蛋白擁有非常廣泛的親和性,可以轉(zhuǎn)導(dǎo)幾乎所有的哺乳動物細(xì)胞,包括分裂細(xì)胞,非分裂細(xì)胞,原代細(xì)胞,穩(wěn)定細(xì)胞系,干細(xì)胞,分化細(xì)胞,貼壁細(xì)胞和懸浮細(xì)胞等各類哺乳動物細(xì)胞,甚至還可以轉(zhuǎn)導(dǎo)一些非哺乳動物細(xì)胞。使用傳統(tǒng)的轉(zhuǎn)染方式轉(zhuǎn)導(dǎo)神經(jīng)元細(xì)胞是非常難的,但是采用我們慢病毒載體系統(tǒng)可以輕易的實現(xiàn)神經(jīng)元細(xì)胞的轉(zhuǎn)導(dǎo)。相對于在某些細(xì)胞中具有較低轉(zhuǎn)導(dǎo)效率的腺病毒和不能用于非分裂細(xì)胞的逆轉(zhuǎn)錄病毒而言,利用我們的慢病毒包裝系統(tǒng)包裝出來的病毒具有廣泛的親和性。
基因拷貝數(shù)相對均一:通常情況下,采用病毒轉(zhuǎn)導(dǎo)的方式可以比較均一的將外源基因轉(zhuǎn)入靶細(xì)胞中,而傳統(tǒng)的質(zhì)粒轉(zhuǎn)染則呈現(xiàn)出較高的不均一性,導(dǎo)致某些細(xì)胞會獲得較多拷貝質(zhì)粒而某些則會獲得較少甚至完全沒有。
體內(nèi)外實驗均有效:我們的載體不僅擁有良好的體外細(xì)胞轉(zhuǎn)導(dǎo)能力,同樣適用于體內(nèi)活體動物實驗。
安全性高:我們的病毒載體系統(tǒng)具備了以下兩大特點,因而具有非常高的安全性。一、病毒包裝和轉(zhuǎn)導(dǎo)所必需的基因由三個輔助質(zhì)粒分開表達(dá)。二、5' LTR的啟動子自失活。因此,在進(jìn)行病毒包裝和病毒轉(zhuǎn)導(dǎo)的時候不會產(chǎn)生具有復(fù)制能力的病毒顆粒,使用我們的載體對人體的健康威脅也是最低的。
載體容量受限:野生型的慢病毒基因組大小約為9.2 kb,而在我們的慢病毒載體中,病毒包裝和轉(zhuǎn)導(dǎo)的必要元件約為2.8 kb,余下6.4 kb的空間容納客戶的目的序列。當(dāng)病毒載體超過以上大小限制,病毒的包裝滴度將會大大降低。我們的慢病毒載體除了可以插入靶基因的序列外,還可以插入啟動子和篩選標(biāo)記等載體元件。如果目的基因和這些載體元件長度超過了6.4 kb,病毒的產(chǎn)量有可能會明顯下降。
技術(shù)復(fù)雜:使用慢病毒載體時,需要在包裝細(xì)胞中產(chǎn)生活病毒,然后測定病毒滴度。因此慢病毒轉(zhuǎn)染相對于常規(guī)質(zhì)粒轉(zhuǎn)染,技術(shù)難度更高,周期更長。
RSV promoter: Rous sarcoma virus promoter. It drives transcription of viral RNA in packaging cells. This RNA is then packaged into live virus.
5' LTR-ΔU3: A deleted version of the HIV-1 5' long terminal repeat. In wildtype lentivirus, 5' LTR and 3' LTR are essentially identical in sequence. They reside on two ends of the viral genome and point in the same direction. Upon viral integration, the 3' LTR sequence is copied onto the 5' LTR. The LTRs carry both promoter and polyadenylation function, such that in wildtype virus, the 5' LTR acts as a promoter to drive the transcription of the viral genome, while the 3' LTR acts as a polyadenylation signal to terminate the upstream transcript. On our vector, 5' LTR-ΔU3 is deleted for a region that is required for the LTR's promoter activity normally facilitated by the viral transcription factor Tat. This does not affect the production of viral RNA during packaging because the promoter function is supplemented by the RSV promoter engineered upstream of 5'LTR-ΔU3 LTR.
Ψ: HIV-1 packaging signal required for the packaging of viral RNA into virus.
RRE: HIV-1 Rev response element. It allows the nuclear export of viral RNA by the viral Rev protein during viral packaging.
cPPT: HIV-1 Central polypurine tract. It creates a "DNA flap" that increases nuclear import of the viral genome during target cell infection. This improves vector integration into the host genome, resulting in higher transduction efficiency.
Promoter: The promoter driving your GOI is placed here.
Lox2272: Recombination site for Cre recombinase. Mutated Lox site with two base substitutions of wild type LoxP. Incompatible with LoxP sites. When Cre is present, the LoxP and LoxP2272 sites will be cut and recombine with compatible sites.
LoxP: Recombination site for Cre recombinase. Incompatible with Lox2272 sites. When Cre is present, the LoxP and Lox2272 sites will be cut and recombine with compatible sites.
Kozak: Kozak consensus sequence. It is placed in front of the start codon of the ORF of interest because it is believed to facilitate translation initiation in eukaryotes.
ORF: The open reading frame of your GOI is placed here, in a sense orientation.
WPRE: Woodchuck hepatitis virus posttranscriptional regulatory element. It enhances transcriptional termination in the 3' LTR during viral RNA transcription, which leads to higher levels of functional viral RNA in packaging cells and hence greater viral titer. It also enhances transcriptional termination during the transcription of the user's GOI on the vector, leading to their higher expression levels.
mPGK promoter: Mouse phosphoglycerate kinase 1 gene promoter. It drives the ubiquitous expression the downstream marker gene.
Marker: A drug selection gene (such as neomycin resistance), a visually detectable gene (such as EGFP), or a dual-reporter gene (such as EGFP/Neo). This allows cells transduced with the vector to be selected and/or visualized.
3' LTR-ΔU3: A truncated version of the HIV-1 3' long terminal repeat that deletes the U3 region. This leads to the self-inactivation of the promoter activity of the 5' LTR upon viral vector integration into the host genome (since the 3' LTR is copied onto 5' LTR during viral integration). The polyadenylation signal contained in 3' LTR-ΔU3 serves to terminates all upstream transcripts produced both during viral packaging and after viral integration into the host genome.
SV40 early pA: Simian virus 40 early polyadenylation signal. It further facilitates transcriptional termination after the 3' LTR during viral RNA transcription during packaging. This elevates the level of functional viral RNA in packaging cells, thus improving viral titer.
Ampicillin: Ampicillin resistance gene. It allows the plasmid to be maintained by ampicillin selection in E. coli.
pUC ori: pUC origin of replication. Plasmids carrying this origin exist in high copy numbers in E. coli.