相關(guān)服務
載體構(gòu)建質(zhì)粒DNA制備
病毒包裝服務
mRNA基因遞送解決方案
CRISPR基因編輯解決方案
shRNA基因敲低解決方案
在蛋白質(zhì)合成過程中,密碼子扮演著將基因信息翻譯為蛋白序列信息的重要角色。
不同的物種翻譯同樣一個氨基酸可能使用不同的密碼子,并且因物種不同而帶有密碼子偏好性。盡管目前尚未得知密碼子偏好性的自然形成的原因,但是這種現(xiàn)象對于蛋白表達效率的影響是顯著的。對于重組蛋白表達,為獲得最佳表達效果,通常需要根據(jù)物種的密碼子偏好性進行序列優(yōu)化。特別是使用異源性的蛋白質(zhì)表達系統(tǒng)時,由于來源于另一物種的目的基因需要在自然條件下不表達該基因的宿主中進行重組蛋白表達,這種優(yōu)化因此顯得更為重要。除此以外,密碼子優(yōu)化還具有其它應用,比如通過優(yōu)化CG含量和重復序列區(qū)域以改善DNA克隆效率。密碼子優(yōu)化還應用在改善mRNA穩(wěn)定性,增強轉(zhuǎn)錄和翻譯效率等方面。
載體家密碼子優(yōu)化工具專為在特定物種中的目的基因表達而設計,并提供在特定物種中目的基因的最佳密碼子適應指數(shù)(Codon Adaptation Index,CAI)。該工具包含一個全面的物種列表,同時無縫銜接我們的線上載體設計平臺,有助您在設計載體時即可完成密碼子優(yōu)化。此外,該工具還提供不同的內(nèi)切酶選項以規(guī)避優(yōu)化后可能產(chǎn)生的酶切位點。我們的密碼子優(yōu)化工具還可以對高GC含量和簡單重復序列等問題進行優(yōu)化,最大程度滿足基因合成和DNA克隆等應用需求。
以下各圖展現(xiàn)了我們的密碼子優(yōu)化工具的多個功能。
圖1展示了對粉紋夜蛾(Trichoplusia ni)的piggyBac轉(zhuǎn)座酶的密碼子人源化優(yōu)化的結(jié)果。最終的優(yōu)化序列的CAI值為0.93,優(yōu)化前該值為0.63。某個物種對應的CAI值量化的是該物種中高表達的基因所偏向使用的密碼子類型的頻率。CAI值范圍為0至1。目的基因的高CAI值意味著在該物種可以被更有效表達。
圖1 使用載體密碼子優(yōu)化工具針對特定物種優(yōu)化的基因序列
圖2展示了小鼠Hoxa4基因的GC含量優(yōu)化結(jié)果。使用我們的密碼子優(yōu)化過工具后,Hoxa4基因的GC含量從69.3%降至59.5%。對于基因克隆時需要合成的基因序列,最佳的GC含量應在60%左右,以增加基因合成成功的機率。
圖2 使用載體家密碼子優(yōu)化工具降低高GC含量
圖3展示了人免疫球蛋白序列自我比對的點陣圖(Dot plot)。優(yōu)化前點陣圖中顯著的對角斜線表明該基因包含大量的重復序列區(qū)域。優(yōu)化后的點陣圖中對角線圖案消減,表明重復序列大為減少。
圖3 使用載體家密碼子優(yōu)化工具減少重復序列區(qū)域
In order to produce proteins, a cell must first translate the relevant mRNA strand. Following transcription, the mRNA exits the nucleus where each group of three nucleotides is matched to a tRNA molecule carrying an amino acid (Figure 1A). These groups of 3 nucleotides are codons, and each corresponds to an amino acid. Because there are only 20 amino acids and many more possible combinations of nucleotides, there is redundancy in this code (Figure 1B).
Figure 1. Formation of a protein through transcription and translation (A) of codons. Each codon corresponds to an amino acid or direction (start/stop).
Although there are multiple options for making each amino acid, their usage is not based on chance. This is because each species exhibits codon bias, the preference for making an amino acid with a certain codon. For instance, alanine (Ala) is coded by GCU, GCC, GCA, and GCG (Figure 1B), but in humans, GCC is used about 40% of the time. Different organisms have different codon preferences, which influences RNA processing and therefore protein folding and function. This creates complications when expressing one gene in another organism, i.e. heterologous gene expression.
The Codon Adaptation Index (CAI) is a measure of how well given codons match with the biases of an organism, ranging from 0 to 1. A CAI of 1 reflects a coding sequence where all amino acids reflect the most frequently used codons in that organism. Our Codon Optimization tool presents a sequence that balances an optimal CAI with other factors that can influence molecular experiments.
Codon optimization can also aid in increasing cloning efficiency based on the distribution of nucleotides across the sequence. GC content is an important variable to consider when designing and troubleshooting experiments. If GC content is too high or too low, stability of the query sequence is negatively affected. Our GC Content Calculator tool allows for independent GC analysis over an entire sequence and within segments of a sequence. However, our Codon Optimization tool incorporates this analysis to optimize this variable by finding synonymous codons that increase or decrease GC content as needed.
Additionally, sequences that have a high frequency of repeats can present complications in cloning efforts due to the lack of unique primer binding sites, and sequences with recognition sites for restriction enzymes can present challenges in experimental design. Using our Codon Optimization tool allows for all of these factors to be optimized in unison with codon bias to provide a sequence that is most likely to efficiently produce your protein in your system.